Boundary value problems for higher order ordinary differential equations

نویسندگان

  • Armando Majorana
  • Salvatore A. Marano
چکیده

Let f : [a, b] × R n+1 → R be a Carathéodory's function. Let {t h }, with t h ∈ [a, b], and {x h } be two real sequences. In this paper, the family of boundary value problems´x is considered. It is proved that these boundary value problems admit at least a solution for each k ≥ ν, where ν ≥ n + 1 is a suitable integer. Some particular cases, obtained by specializing the sequence {t h }, are pointed out. Similar results are also proved for the Picard problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type

In this paper, we have proposed a numerical method for singularly perturbed  fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and  finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided  in...

متن کامل

Modified Laplace Decomposition Method for Singular IVPs in the second-Order Ordinary Differential Equations

  In this paper, we use modified Laplace decomposition method to solving initial value problems (IVP) of the second order ordinary differential equations. Theproposed method can be applied to linear and nonlinearproblems    

متن کامل

Exact Implementation of Multiple Initial Conditions in the DQ Solution of Higher-Order ODEs

The differential quadrature method (DQM) is one of the most elegant and useful approximate methods for solving initial and/or boundary value problems. It is easy to use and also straightforward to implement. However, the conventional DQM is well-known to have some difficulty in implementing multiple initial and/or boundary conditions at a given discrete point. To overcome this difficulty, this ...

متن کامل

On boundary value problems of higher order abstract fractional integro-differential equations

The aim of this paper is to establish the existence of solutions of boundary value problems of nonlinear fractional integro-differential equations involving Caputo fractional derivative by using the techniques such as fractional calculus, H"{o}lder inequality, Krasnoselskii's fixed point theorem and nonlinear alternative of Leray-Schauder type. Examples are exhibited to illustrate the main resu...

متن کامل

F-TRANSFORM FOR NUMERICAL SOLUTION OF TWO-POINT BOUNDARY VALUE PROBLEM

We propose a fuzzy-based approach aiming at finding numerical solutions to some classical problems. We use the technique of F-transform to solve a second-order ordinary differential equation with boundary conditions. We reduce the problem to a system of linear equations and make experiments that demonstrate applicability of the proposed method. We estimate the order of accuracy of the proposed ...

متن کامل

Existence of positive solution to a class of boundary value problems of fractional differential equations

This paper is devoted to the study of establishing sufficient conditions for existence and uniqueness of positive solution to a class of non-linear problems of fractional differential equations. The boundary conditions involved Riemann-Liouville fractional order derivative and integral. Further, the non-linear function $f$ contain fractional order derivative which produce extra complexity. Than...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010